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Abstract

It is demonstrated that, if the activation energy depends on the degree of conversion, its values ob-

tained by isoconversional differential and integral methods are different.
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Introduction

The kinetics of the heterogeneous condensed phase reactions is usually described [1]

by the equation:
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where α is the degree of conversion, t is the time, A is the pre-exponential factor, E is

the activation energy, R is the gas constant and f(α) is the differential conversion

function.

For non-isothermal conditions with a linear heating program (the heating rate is

β=dT/dt=const.) relation (1) becomes:
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Relations (1) and (2) ground the procedures for evaluation of the kinetic parame-

ters of heterogeneous condensed phase reactions under isothermal (Eq. (1)) and

non-isothermal (Eq. (2)) conditions.

Critical analyses of methods for the evaluation of kinetic parameters under

non-isothermal conditions are to be found in some recent papers [2–5].

In the present paper we focus on the isoconversional methods which are

known to permit a model independent estimate of the activation energy. Use of

these methods allows the dependence of the activation energy on the degree of

conversion to be taken into account. Dowdy [6] showed that, for systems of com-

petitive or independent reactions, the Friedman isoconversional differential

method (Fr) [7] and Flynn–Wall–Ozawa isoconversional integral method (FWO)

[8, 9] lead to different values of the activation energy. These values were com-

pared with the instantaneous mean activation energy given by Dowdy [6], whose

expression corresponds to an open system of either parallel or independent reac-

tions.

Recent papers [5, 10] have demonstrated that, for the dehydration of calcium

oxalate monohydrate and for the thermal degradation of polychloroprene rubber,

the activation energy depends on the degree of conversion and EFWO≠EFR (EFWO and

EFR are the activation energy values determined by means of the Flynn–Wall–

Ozawa and Friedman methods). On the other hand, if E is independent on α , then

the two methods lead to practically the same activation energy value. These re-

sults [5] and the theoretical considerations based on them were the subject of a re-

cent critical analysis by Criado et al. [11].

The reasons for the differences between EFWO and EFR observed for E=E(α)

could be that

a) the numerical instability of the differential method could lead to high errors

in the estimation of EFR values;

b) the use of Doyle’s approximation [12] for the temperature integral could re-

sult in errors in EFWO.

As pointed out by Flynn [13], the possibility a) is valid only when the deriva-

tive values are obtained from thermal analysis curves, which often exhibit consid-

erable experimental scatter. The advent of computer interfacing with integrating

and smoothing capabilities has greatly reduced this disadvantage of the Friedman

method [13].

In order to reveal that possibility b) does not cause the differences between

EFWO and EFR, due to the dependence of E on α , in this paper we shall present a crit-

ical discussion of the isoconversional methods used to process the non-isothermal

data.

However, in the first section of this work, use of the isoconversional methods

to evaluate the activation energy for isothermal data will be discussed.We con-

sider such an analysis to be necessary for an understanding of the critical analysis

of the isoconversional methods applied to non-isothermal data.
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Isoconversional methods for evaluation of the activation energy

Isothermal conditions

The differential method for evaluation of the activation energy is based on the loga-

rithmic form of equation (1):

ln ln ( )
d
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For α=const., a plot of ln dα/dt vs. 1/T should be a straight line whose slope al-

lows an evaluation of the activation energy.

A variant of this method suggested by Flynn [13] is based on the following form

of Eq. (3):
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For α=const., a plot of Tln(dα/dt) vs. T should be a straight line whose intercept

allows evaluation of the activation energy.

According to Flynn [10] if the isoconversional lines ln(dα/dt) vs. 1/T and

Tln(dα/dt) vs. T are bent, then the kinetics is too complex to be described by Eq. (1).

The integral method uses the integral form of equation (1):
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from which it emerges that:
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(6)

For α=const., a plot of lnt vs. 1/T should be a straight line whose slope allows

evaluation of the activation energy.

Obviously, application of the differential and integral methods to the same iso-

thermal data should lead to the same value of the activation energy. However, such an

agreement should be expected only if E does not depend on α. The dependence

E=E(α) is characteristic for complex processes (parallel, successive or reversible re-

actions). In such cases, for the large temperature range in which the reaction iso-

therms were recorded, bending of the isoconversional lines should be observed, i.e.

the activation energy becomes dependent on temperature. For a given (α, T) pair, the

activation energy can be evaluated through differentiation of the isoconversional

curve ln(dα/dt) vs. 1/T for the differential method, or of the isoconversional curve lnt
vs. 1/T for the integral method:
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Relation (6) was derived through the integration of Eq. (1) for activation param-

eters which do not depend on α. If this condition is not fulfilled, the integration of

Eq. (1) is no longer correct. This is the reason why in such cases it must be expected

that E Edif

,T

int

,Tα α≠ .

For real cases, the kinetic investigation of heterogeneous condensed phase reac-

tions is performed in rather narrow ranges of temperature. Under such conditions, the

isoconversional plots ln(dα/dt) vs. 1/T and lnt vs. 1/T are practically linear. Even in

these cases, however, the condition Edif≠Eint should be fulfilled.

Non-isothermal conditions

If isoconversional methods are to be used, thermal analysis curves must be recorded

at several heating rates. It is presumed that the kinetic parameters of the investigated

change do not depend on the heating rate.

Friedman’s isoconversional method [7] is based on Eq. (2) written in the follow-

ing form:

ln ln ( )β α αd

dT
Af

E

RT
= − (9)

For α=const., a plot of lnβ(dα/dT) vs. 1/T should be a straight line whose slope

allows evaluation of the activation energy.

Some integral methods are based on the following relation, which is obtained

from Eq. (2) through integration:
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where x=E/RT and p(x) is the temperature integral which can not be calculated ex-

actly.

The isoconversional integral methods differ according to the approximation

used to calculate the temperature integral.

The isoconversional integral method given independently by Flynn and Wall [8]

and Ozawa [9] uses the Doyle approximation [12]:
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ln ( ) . .p x x=− −5331 1052 (11)

Relations (10) and (11) lead to:
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Thus, for α=const., a plot of lnβ vs. 1/T, obtained from thermal curves recorded

at several heating rates, should be a straight line whose slope allows evaluation of the

activation energy. As far as, the pre-exponential factor is concerned, its value can be

obtained from the intercept if the form of the integral conversion function is known.

For x<20, Doyle’s approximation leads to errors higher than 10%. For such cases

Flynn [14] suggested corrections in order to obtain correct activation energy values.

Agrawal [15] suggests the following approximation for the temperature integral:
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where m is a parameter specific for other approximations previously suggested (for

m=0, the known Coats–Redfern approximation [16] is obtained).

Vyazovkin and Dollimore [17] have shown that, for x>10, (1–2/x)(1–m/x2)≈1.

Under such conditions, relations (10) and (13) lead to:

ln ln
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Thus, for α=const., a plot of ln(β/T 2) vs. 1/T, obtained from thermal curves re-

corded at several heating rates, is a straight line whose slope allows evaluation of the

activation energy and whose intercept allows the value of the pre-exponential factor

to be obtained for a known analytical form of the integral function of conversion.

Li and Tang [18, 19] recently suggested an isoconversional integral method

which involves no approximation to the temperature integral and is easy to imple-

ment on the computer. The relation on which this method is based results from using

the α integral of both sides of Eq. (9) :
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where G A f( ) ln (ln ( ))α α α α
α

= +∫ d
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.

A plot of [ ( / )]ln Tβ α α
α

d d d

0

∫ vs. ( / )1
0

T dα
α

∫ for a given α for a set of β’s will there-

fore have the slope (–E/R).

Obviously, the different isoconversional methods applied to the same non-iso-

thermal data should lead to the same activation energy value. Nevertheless, in a pre-

vious paper [5] we have shown that EFR=EFWO only if E does not depend on α. It was
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demonstrated that, if E depends on α, EFR≠EFWO. The question next arises as to

whether, under such conditions, EFR differs not only from EFWO, but also from EV and

ELT (EV and ELT are the activation energies obtained by using relation (14) and rela-

tion (15), respectively); in other words, whether the previously reported differences

between EFR and EFWO [5] are due to the use of Doyle’s approximation only. We con-

sider that the existence of significant differences between EFR and E calculated by us-

ing integral methods are due to the mode of derivation of the relations, on which the

integral methods are based. These relations are derived by considering that the activa-

tion parameters do not depend on α. Obviously, if E=E(α) and A=A(α), these deriva-

tions are not correct. The dependences of the activation energy and the pre-expo-

nential factor on the degree of conversion generally reflects the existence of a com-

pensation effect which corresponds to the validity of the following relation [20–24]:

ln A aE b= + (16)

where a and b are constants.

Conclusions

The relations on which the isoconversional methods for determination of the kinetic

parameters of heterogeneous condensed phase reactions are based for both isothermal

and non-isothermal data have been presented and analysed.
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